PULSE WAVES. ROLE IN THE IMPLEMENTATION AND REGULATION OF HEMODYNAMICS Part 1. Types of pulse waves, origin, propagation, registration and analysis; relationship of parameters with heart function and hemodynamics
https://doi.org/10.51922/1818-426X.2025.1.32
Abstract
Pulse waves and the response of arterial vessels to changes in hemodynamics have been studied in 121 subjects, of which 58 women and 59 men were of age 21.5 ± 1.6 years old, and 4 subjects 63–79 years old. Pulse waves were recorded by two methods: using photoelectric and mechanoelectric sensors, synchronously with ECG in 2nd standard lead. The reaction of small arteries and arterioles was recorded by method of microspectrometry. Based on the analysis of the results of this study and literature data, the following conclusions and assumptions can be made:
- the use of sensors that respond to mechanical pulsating displacements of the arterial wall caused by changes in blood pressure in the systole and diastole of the heart allows recording pulse pressure The use of sensors sensitive to changes in the volume and velocity of blood flow makes it possible to record pulse flow waves. Synchronous recording of pulse oscillations with these two types of sensors makes it possible to record both types of pulse waves;
- pulse pressure waves propagate along the arterial wall at a higher velocity than the velocity of pulse flow wave in blood, and pulse pressure wave is recorded earlier than flow wave;
- pulse waves parameters (amplitude, steepness of anacrotis, duration of delay of onset of anacrotis relative to R wave on ECG, delay pulse flow waves relative pulse pressure waves, pulse waves propagation velocity) depend on the rate of myocardium excitation, stroke volume, arterial pressure and volume of blood flowing into arterial
Additional research is required to verify the assumptions made about the role of pulse waves in implementation and regulation of hemodynamics in a healthy body, and the possible significance of its disturbance in the mechanisms of development of cardio vascular and other diseases.
About the Authors
A. I. KubarkoBelarus
I. M. Gurinovich
Belarus
References
1. Obata, Y., Mizogami M., Nyhan D., et al. Pilot Study: Estimation of Stroke Volume and Cardiac Output from Pulse Wave Velocity. PLoS One. – 2017. – № 12(1). – Р. e0169853. doi: 10.1371/journal.pone.0169853.
2. Yartsev, A. Factors which contribute to pulse variation // Deranged Physiology. – 2020.
3. Avolio, A. P., kuznetsova T., Heyndrickx G. R. et al. Arterial Flow, Pulse Pressure and Pulse Wave Velocity in Men and Women at Various Ages // Adv Exp Med Biol. – 2018. – Vol. 1065. – P. 153–167. doi: 10.1007/978-3-319-77932-4_10.
4. Emrany, S., Saponas T. S., Morris D. et al. A Novel Framework for Pulse Pressure Wave Analysis Using Persistent Homology // IEEE. – 2015. – № 22(11). – Р. 1879–1883. doi: 10.1109/LSP.2015.2441068.
5. Alastruey, J., Charlton P. H., Bikia V. et al. Arterial pulse wave modeling and analysis for vascular-age studies: a review from Vasc Age Net // Amer. J. of Physiol. – 2023. – Vol. 325(1). – P. H1–H29.
6. Kubarko, A. I., Leshchenko V. G., Mansurov V. A. Pul’sovaya volna v iskrivlyonnyh sosudah. Medelektronika. – Minsk, 2020. – P. 45–49.
7. Mynard, M. P., Kondiboyina A., Kowalski R. et al. Measurement, Analysis and Interpretation of Pressure/ Flow Waves in Blood Vessels // Front. Physiol, Sec. Vasc. Physiol. – 2020. – № 11. doi: org/10.3389/fphys.2020.01085.
8. Charlton, P. H., Harana J. M., Vennin S. et al. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes // Amer. J of Physiol. – 2019. – Vol. 317(5). – P. H1062–H1085. doi: 10.1152/ajpheart.00218.
9. Wang, H., Wang L., Sun N. et al. Quantitative Comparison of the Performance of Piezoresistive, Piezoelectric, Acceleration, and Optical Pulse Wave Sensors // Front. Physiol. – 2020. – № 14. – Р. 1563.
10. Rogatkin, D. A. Fizicheskie osnovy opticheskoj spektrometrii // Medicinskaya fizika. – 2012. – № 2. – Р. 97–114.
11. Chan, E. D., Chan M. M. Pulse oximetry: understanding its basic principles facilitates appreciation of its imitatioms // Respir. Med. – 2013. – Vol. 107(6). – P. 789–799.
12. Park, J., Seok H. S., Kim S. S. et al. Photoplethysmogram Analysis and Applications: An Integrative Review // Front Physiol. – 2022. – № 12. – Р. 808451.
13. Meng, K., Xiao X., Wei W. et al. Wearable Pressure Sensors for Pulse Wave Monitoring // Adv. Mater. – 2022. – № 34. – Р. e2109357.
14. Mahmud, S., Ibtehaz N., Khandakar A. et al. A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals // Sensors. – 2022. – № 22. – Р. 919.
15. Mousavi, S. S., Firouzmand M., Charmi M. et al. Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method // Biomed. Signal Process. Control. – 2019. – № 47. – Р. 196–206.
16. Wang, G., Atef M., Lian Y. Towards a continuous non-invasive cuffless blood pressure monitoring system using PPG: Systems and circuits review // IEEE Circuits Syst. Mag. – 2018. – № 18. – Р. 6–26.
17. Proença, L. Z., Nechesova T. A., Livenceva M. M. et al. Sposob ocenki parametrov rasprostraneniya pul’sovoj volny reovazograficheskim metodom Instrukciya po primeneniyu. Respublikanskij nauchnoprakticheskij centr «Kardiologiya». – 2005. Rgistracionnyj № 134-1005.
18. Poloneckij, L. Z., Nechesova T. A., Livenceva M. M. et al. Sposob ocenki parametrov rasprostraneniya pul'sovoj volny reovazograficheskim metodom Instrukciya po primeneniyu. Respublikanskij nauchnoprakticheskij centr «Kardiologiya» 2005. Rgistracionnyj № 134–1005.
19. Kubarko, A. I., Mansurov V. A., Svetlichnyj A. D., Ragunovich L. D. Rasprostranenie pul’sovoj volny po malym sosudam: rezul’taty izmerenij i podhody k modelirovaniyu // Neotlozhnaya kardiologiya i kardiovaskulyarnye riski. – 2020. – № 4(2). – Р. 1037–1044.
20. Kubarko, A. I., Bur E. A. Izmenenie skorosti rasprostraneniya pul’sovoj volny po arterial’nym sosudam pri narushenii gemodinamiki // Zdravoohranenie. – 2021. – № 5. – Р. 29–36.
21. Nikkonen, S., Afara I. O., Myllymaa S., et al. Deep learning enables sleep staging from photoplethysmogram for patients with suspected sleep apnea // Sleep. – 2020. – № 43(11).
22. Dall’Olio, L., Curti N., Remondini D. et al. Prediction of vascular aging based on smartphone acquired PPG signals // Sci. Rep. – 2020. – № 10. – Р. 19756.
23. Hirata, K., Kawakami M., O’Rourke M. F. et al. Pulse Wave Analysis and Pulse Wave Velocity A Review of Blood Pressure Interpretation // Circ J. – 2006. – Vol. 70. – P. 1231–1239. 100 Years After Korotkov.
24. Millasseau, S. C., Kelly R. P., Ritter J. M. et al. The vascular impact of aging andvasoactive drugs: Comparison of two digital volume pulse measurements // Am. J. Hypertens. – 2003. – № 16. – Р. 467–472.
25. Protasov, K. V., Makarova A. S., Batyoha V. I. et al. Pokazateli zhyostkosti aorty pri degenerativnom aortal’nom stenoze // Arterial’aya gipertenziya. – 2021. – № 27(6). – Р. 300–308.
26. Hashimotoa, J., Chonana K., Aokia Y., et al. Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors // Hypertension. – 2002. – № 20. – Р. 2415–2422.
27. Bortolotto, L. A., Kondo T., Takazawa K. et al. Assessment of vascular aging and atherosclerosis in hypertensive subjects: Second derivative of photoplethysmogram versus pulse wave velocity // Am. J. Hypertens. – 2000. – № 13. – Р. 165–171.
28. Takazawa, K., Tanaka N., Fujita M. et al. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform // Hypertension. – 1998. – № 32. – Р. 365–370.
29. Allen, J., Liu H., Iqbal S. et al. Deep learningbased photoplethysmography classification for peripheral arterial disease detection: A proof-of-concept study // Physiol. Meas. – 2021. – № 42. – Р. 054002.
30. Bentham, M., Stansby G., Allen J. Innovative multisite photoplethysmography analysis for quantifying pulse amplitude and timing variability characteristics in peripheral arterial disease // Diseases. – 2018. – № 6. – Р. 81.
31. Alnaeb, M. E., Alobaid N., Seifalian A. M. et al. Optical techniques in the assessment of peripheral arterial disease // Curr. Vasc. Pharmacol. – 2007. – № 5. – Р. 53–59.
32. Cannesson, M., Besnard C., Durand P. G. et al. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients // Crit. Care. – 2005. – № 9. – Р. R562.
33. Lazazzera, R., Deviaene M., Varon C. et al. Detection and classification of sleep apnea and hypopnea using PPG and SpO2 signals // IEEE Trans. Biomed. Eng. – 2020. – Vol. 68. – Р. 1496–1506.
34. Hilmisson, H., Berman S., Magnusdottir S. Sleep apnea diagnosis in children using software-generated apnea-hypopnea index (AHI) derived from data recorded with a single photoplethysmogram sensor (PPG) // Sleep Breath. – 2020. – № 24. – Р. 1739–1749.
35. Park, K. S., Choi S. H. Smart technologies toward sleep monitoring at home // Biomed. Eng. Lett. – 2019. – № 9. – Р. 73–85.
36. Behar, J., Roebuck A., Shahid M. et al. Sleep Apnea An automated obstructive sleep apnea screening application for smartphones // IEEE J. Biomed. Health Inform. – 2014. – № 19. – Р. 325–331.
37. Saugel, B., Kouz K., Thomas W. L. et al. Cardiac output estimation using pulse wave analysis – physiology, algorithms, and technologies: a narrative review // Br J Anaesth. – 2021. – Vol. 126(1). – Р. 67–76. doi: httdoi.org/10.1016/j.bja.2020.09.049.
38. Parfyonov, A. S. Ekspress-diagnostika serdechno sosudistyh zabolevanij // Mir izmerenij. – 2008. – № 6. – Р. 74–82.
39. Sutton-Tyrrell, K., Najjar S. S., Boudreeau R. M. et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well – functioning older adults // Circulation. – 2005. – Vol. 111. – Р. 3384–3390.
40. Stoner, L. Guidelines for the use of pulse wave analysis in adults and children // J atherosclerosis and thrombosis. – 2013. – № 20(4). – Р. 304–406.
41. Williams, B., Mancia J., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension // Europ Heart J. – 2018. – № 00. – Р. 1–98. doi:10.1093/eurheartj/ehy339.
42. Ben-Shlomo, Y., Spears M. O, Boustred C. et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects // J Am Coll Cardiol. – 2014. – Vol. 63. – P. 636–646.
43. Frolov, A. V., SidorenkoG. I., Vorob’yov A. P. et al. Pryamaya i otrazhyonnaya pul’sovye volny: metody issledovaniya. RNPC “Kardiologiya”. – Minsk, 2008.
44. Cockcroft, L. J., Van Bortel L., Boutouyrie P. et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications // Eur Heart J. – 2006. – № 27(21). – Р. 2588–2605.
45. Stephanie, S., De Loach R., Townsend R. Vascular Stiffness: Its Measurement and Significance for Epidemiologic and Outcome Studies // Clin J Am Soc Nephrol. – 2008. – № 3. – Р. 184–192. doi: 10.2215/CJN.03340807.
46. Luc, M., Van Bortel, Laurent S., Boutouyrie P. et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotidfemoral pulse wave velocity // J Hypertens. – 2012. – № 30(3). – Р. 445–448. doi: 10.1097/HJH.0b013e32834fa8b0.
47. Spronck, B., Terentes-Printzios D., Avolio A. P. et al. Recomendations for validation of noninvasive arterial pulse wave velocity measurement devices // Hypertension. – 2024. – Vol. 81. – P. 183–192. doi: org/10.1161/HYPERTENSIONAHA.123.21618.
48. Park, J. B., Sharman J. E., Yan Li. et al. Expert Consensus on the Clinical Use of Pulse Wave Velocity in Asia Pulse (Basel). – 2022. – № 10(1–4). – P. 1–18. doi: 10.1159/000528208.
49. Guyton, A. C., Hall J. E. Textbook of medical physiology // Elsevier Inc. – 2006.
50. Smirnov, V. M. et al. Fiziologiya cheloveka; pod red. V. M. Smirnova. – M., 2012.
51. Shmidt, R., Tevs G. Fiziologiya cheloveka: v 3 t. – M.: Mir, 2010.
52. Berne, R. M., Levy. Cardiovascular Physiology. 5th ed. – St. Louis, 1997.
53. Ganong, W. F. Review of medical physiology, ed N. Y., McGraw Hill. – 2003.
54. Kubarko, A. I. Sistemnyj analiz energeticheskih i kletochno-molekulyarnyh osnov raboty serdca i nekotoryh ee narushenij // Zdravoohranenie. – 2022. – № 8. – Р. 31–52.
55. Hughes, A. D., Parker, K. H., Davies, J. E. Waves in arteries: a review of wave intensity analysis in the systemic and coronary circulations // Artery Res. – 2008. – № 2. – Р. 51–59. doi: 10.1016/j.artres.2008.02.002.
56. Westerhof, N. An artificial arterial system for pumping hearts // J. Applied Physiology. – 1971. – № 31. – Р. 776–781.
57. Pokrovskij, V. M., Korot’ko G. F. Fiziologiya cheloveka. – M.: Medicina, 2003.
58. Khoshdel, A., Thakkinstian A., Carney S. et al. Estimation of an age-specific reference interval for pulse wave velocity: meta-analysis // J. of Hypertension. – 2007. – № 24. – Р. 1231–1237.
59. Díaz, A., Galli C., Tringler M. et al. Reference Values of Pulse Wave Velocity in Healthy People from an Urban and Rural Argentinean Population // Article ID 653239, 2014. doi.org/10.1155/2014/653239.
60. Blacher, J., Safar M., Guerin A. et al. Aortic pulse wave velocity index and mortality in end-stage renal disease // Kidney International. – 2003. – Vol. 63. – P. 1852–60.
61. Park, S.-M., Seo H.-S., Lim H-E. et al. Assessment of Arterial Stiffness Index as a Clinical Parameter for Atherosclerotic Coronary Artery Disease // Circ J. – 2005. – Vol. 69. – P. 1218–1222.
62. Li, Y., Wang J-G., Dolan E. et al. Ambulatory Arterial Stiffness Index Derived From 24-Hour Ambulatory Blood Pressure Monitoring // Hypertension. – 2006. – № 47. – Р. 359–364.
63. Etmenhorst, J., Weberruss H., Pfister K. et al. Comparison of ywo measurement devices for pulse wave velocity in children: which toolis useful to detect vascular alterations caused by overweight? // Pediatric Cardiology. – 2019. – № 7. doi.org/10.3389/ped.2019.00334.
64. Fan, Z., Zhang G., Liao S. Pulse Wave Analysis 2011. doi: 10.5772/22600.
65. Andreozzi, E., Sabbadini R., Centracchio J. et al. MultimodalFinger PulseWave Sensing:Comparison of Force cardiography and Photoplethysmography Sensors. Sensors. – 2022. – № 22. – Р. 7566. doi.org/10.3390/s22197566.
66. Saugel, B., Kouz K., Scheeren T. W. L. et al. Cardiac output estimation using pulse wave analysis – physiology, algorithms, and technologies: a narrative review // BJA. – 2021. – Vol. 126(1). – P. 67–76.
67. Safar, M. E. and Lacolley P. Disturbance of macroand microcirculation: relations with pulse pressure and cardiac organ damage // Am J Physiol Heart Circ Physiol. – 2007. – Vol. 293. – Р. H1–H7. doi: 10.1152/ajpheart.00063.2007.
68. Laurent, S., Cockcroft J., Van Bortel L. et al. Expert consensus document on arterial stiffness: methodological issues and clinical application // European Heart J. – 2006. – № 27(21). – Р. 2588–25605.
69. Fan, Zh., Zhan G.., Liao S. Pulse Wave Analysis. doi: 10.5772/22600.
70. Doupis, J., Papanas N., Cohen K. et al. Pulse Wave Analysis by Applanation Tonometry for the Measurement of Arterial Stiffness // Open Cardiovasc Med J. – 2016. – № 10. – Р. 188–195. doi: 10.2174/1874192401610010188.
71. Blacher, J., Asmar R., Djane S. et al. Aortic pulse wave as a marker of cardiovascular risk in hypertensive patients // Hypertens. – 1999. – № 3. – Р. 1111–17.
72. Carlos, A. Valencia-Hernández Joni V. Lindbohm Martin J. Shipley 72 Aortic Pulse Wave Velocity as Adjunct Risk Marker for Assessing Cardiovascular Disease Risk: Prospective Study // Hypertension. – 2022. – № 79(4). – Р. 836–843. doi: org/10.1161/HYPERTENSIONAHA.121.17589.
73. Wentland, A. L., Grist T. M., Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness // Cardiovasc Des. – 2014. – № 2(4). doi: 10.3978/j.issn.2223-3652.2014.03.04.
74. Safar, M. E., O’Rourke M. F. Arterial stiffness in hypertension. In: Handbook of Hypertension, edited by Birkenhäger WH and Reid JL. – New York: Elsevier, 2006. – № 23. – Р. 3–62, 75–136, 459–501.
75. Kubarko, A. I., Fmrago V. A. Fiziologicheskaya ocenka rezul’tatov spektrometrii coderzhaniya oksigemoglobina i reakcii mikrososudov na izmenenie gemodinamiki // Neotlozhnaya kardiologiya i kardiovaskulyarnye riski. – 2018. – № 2(2). – Р. 358–363.
76. Rajala, S., Ahmaniemi T., Lindholm H. et al. Pulse arrival time (PAT) measurement based on arm ECG and finger PPG signals-comparison of PPG feature detection methods for PAT calculation. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15, 2017.
77. Vlachopoulos, C., Stefanadis P. C., Tousoulis D. et al. Cardiology Working Group on Peripheral Circulation Methods for evaluating endothelial function: a position statement from the European Society // Europ J Cardiovasc Prevention and Rehabilitation. – 2011. – № 18. – Р. 775. doi: 10.1177/1741826711398179.
Review
For citations:
Kubarko A.I., Gurinovich I.M. PULSE WAVES. ROLE IN THE IMPLEMENTATION AND REGULATION OF HEMODYNAMICS Part 1. Types of pulse waves, origin, propagation, registration and analysis; relationship of parameters with heart function and hemodynamics. Medical Journal. 2025;(1):32-56. (In Russ.) https://doi.org/10.51922/1818-426X.2025.1.32