Preview

Medical Journal

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Pulse waves. Role in the implementation and regulation of hemodynamics Part 2. The role of pulse waves in the transmission of information signals, in the implementation and regulation of hemodynamics

https://doi.org/10.51922/1818-426X.2025.2.19

Abstract

Based on the analysis and discussion of the results of this study pulse pressure waves and pulse flow waves, the reaction of arterial vessels to changes in hemodynamics when pulse waves pass through them, as well as literature data, the following assumptions can be made:

– pulse pressure waves store the energy of the contracting myocardium in the form of a pressure gradient. Part of the energy of the pulse pressure wave front is spent on its propagation along the artery wall. Another portion of the pulse pressure wave energy is probably converted into a pulse flow wave, promoting the movement of a certain volume of blood into the artery;

– the duration of the delay time of pulse waves relative to the phases of myocardial excitation and the cardiac cycle reflects the direction of the arterial vessels reaction to a rapid change in arterial blood pressure and blood flow to them. Under these conditions an increase in the delay time and a decrease in the velocity of pulse waves propagation indicate on relaxation the smooth myocytes of the arterial wall and vessel expansions. The delay time shortening and increase in the velocity propagation indicate on the reaction of narrowing arterial vessels.

– pulse wave parameters encode a variety of information about the work of the heart (heart rate, rhythm, and stroke volume), the state of hemodynamics (blood pressure level and the dynamics of its changes, blood volume, blood flow velocity, and blood properties), and vessels reaction to their changes (constriction or dilation);

 – pulse waves propagating through arteries and blood at high velocity initiate the basic response of arterial vessels to changes in the pulse wave’s parameters. With a rapid increase in pressure at the front of pulse pressure wave, and with a rapid increase in velocity and blood volume during the passage of pulse pressure and pulse flow waves, arterial vessels may initially respond with rapid myogenic constriction followed by their dilation. The vascular response occurs during each cardiac cycle, and it is an integral part of the systemic mechanisms of hemodynamic correspondence of blood volumes flowing from the proximal arteries and flowing further into distal vessels, and prevention of macro- and microcirculation correspondence disorders;

 – there are grounds for assumption that pulse waves are involved in the implementation of the mechanism of maintaining the correspondence of macro- and microcirculation, by their influence on the balance of factors and substances with vasoconstrictor (myogenic constriction, endothelin, norepinephrine (NE), peptide Y) and vasodilator effects (CGRP peptide, nitric oxide (NO). Changing this balance is necessary for the transition from myogenic vasoconstriction to dilation, for reducing peripheral resistance, the possibility of the pronounced reflected waves formation, and return of vessels to the intermediate lumen to restore their readiness to respond to new changes in hemodynamics;

 – dysfunction of the basic central reflex mechanisms and/or peripheral mechanisms of dynamic assessment of pulse wave parameters, as well as the reaction of the heart, large and small arteries initiated by the pulse wave, may be the cause of pathological changes in hemodynamics. Thus, a disturbance of the central reflex mechanisms of dynamic assessment of pulse wave’s parameters by the aortic arch and carotid artery receptors under changes of the arterial blood pressure can result in the development of orthostatic hypotension up to temporary loss of consciousness. It can be assumed that such dysfunction of the peripheral mechanisms of dynamic assessment of pulse wave’s parameters, and initiated by pulse waves small arteries and arterioles response to changes of hemodynamics, may be a component of arterial hypertension pathogenesis, as well as disturbances of hemodynamic correspondence of macro- and microcirculation in heart failure, intravenous fluid infusion for blood loss, sepsis and other conditions in intensive care units.

Additional research is required to verify the assumptions made about the role of pulse waves in implementation and regulation of hemodynamics in a healthy body, and the possible significance of its disturbance in the mechanisms of development of cardio vascular and other diseases.

About the Authors

A. I. Kubarko
УО «Белорусский государственный медицинский университет»
Belarus


I. M. Gurinovich
УО «Белорусский государственный медицинский университет»
Belarus


References

1. Obata, Y., Mizogami M., Nyhan D. et al. Pilot Study: Estimation of Stroke Volume and Cardiac Output from Pulse Wave Velocity // PLoS One. – 2017. – № 12(1). – Р. e0169853. doi: 10.1371/journal.pone.0169853.

2. Emrany, S., Saponas T. S., Morris D. et al. A Novel Framework for Pulse Pressure Wave Analysis Using Persistent Homology // IEEE. – 2015. – № 22(11). – Р. 1879–1883. doi: 10.1109/LSP.2015.2441068.

3. Stoner, L. Guidelines for the use of pulse wave analysis in adults and children // J atherosclerosis and thrombosis. – 2013. – № 20(4). – Р. 304–406.

4. Ben-Shlomo, Y., Spears M. O, Boustred C. et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data. from 17,635 subjects // J Am Coll Cardiol. – 2014. – Vol. 63. – Р. 636–646.

5. Emrani, S., Saponas T. S., Morris D. and H. Krim. A Novel Framework for Pulse Pressure Wave Analysis Using Persistent Homology // IEEE Signal Processing Letters. – 2015. – № 22(11). – Р. 1879–1883. doi: 10.1109/LSP.2015.244106.

6. Parfyonov, A. S. Ekspress-diagnostika serdechno sosudistyh zabolevanij // Mir izmerenij. – 2008. – № 6. – Р. 74–82.

7. Antipov, N. O. Programmnyj kompleks dlya sovmestnogo analiza signalov ekg i fotopletizmogrammy. SPbGETU “LETI”. – Sankt-Peterburg, 2019.

8. Fan, Z., Zhang G., Liao S. Pulse Wave Analysis. – 2011. doi: 10.5772/22600.

9. Stettler, C., Niederer P., Anliker M. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: Mathematical model and prediction of normal pulse patterns // Ann Biomed Eng. – 1981. – № 9. – Р. 145–164.

10. Frolov, A. V., Sidorenko G. I., Vorob’yov A. P. et al. Pryamaya i otrazhyonnaya pul’sovye volny: metody issledovaniya. – Minsk: RNPC “Kardiologiya”, 2008.

11. Stojadinović, B., Tenne T., Zikich D. et al. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion puls ewave velocity in fluid-fill elastic tube // J Biomech. – 2015. – № 48(15). – Р. 3969–3974.

12. Mynard, M. P., Kondiboyina A., Kowalski R. et al. Measurement, Analysis and Interpretation of Pressure/ Flow Waves in Blood Vessels // Front. Physiol, Sec. Vasc. Physiol. – 2020. – № 11. doi.org/10.3389/fphys.2020.0105.

13. Guyton, A. C., Hall J. E. Textbook of medical physiology. Elsevier Inc. – 2006.

14. Khoshdel, A., Thakkinstian A., Carney S. et al. Estimation of an age-specific reference interval for pulse wave velocity: meta-analysis // J. of Hypertension. – 2007. – № 24. – Р. 1231–1237.

15. Díaz, A., Galli C., Tringler M. et al. Reference Values of Pulse Wave Velocity in Healthy People from an Urban and Rural Argentinean Population. Article ID 653239. – 2014. doi: org/10.1155/2014/653239

16. Kubarko, A. I., Mansurov V. A., Svetlichnyj A. D., Ragunovich L. D. Rasprostranenie pul’sovoj volny po malym sosudam: rezul’taty izmerenij i podhody k modelirovaniyu // Neotlozhnaya kardiologiya i kardiovaskulyarnye riski. – 2020. – № 4(2). – Р. 1037–1044.

17. Luc, M., Van Bortel, Laurent S., Boutouyrie P. et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity // J Hypertens. – 2012. – № 30(3). – Р. 445–448. doi: 10.1097/HJH.0b013e32834fa8b0.

18. Spronck, B., Terentes-Printzios D., Avolio A. P. et al. Recomendations for validation of noninvasive arterial pulse wave velocity measurement devices // Hypertension. – 2024. – № 81. – Р. 183–192. doi: org/10.1161/HYPERTENSIONAHA.123.21618.

19. Andreozzi, E., Sabbadini R., Centracchio J. et al. Multimodal Finger Pulse Wave Sensing: Comparison of Force cardiography and Photoplethysmography Sensors // Sensors. – 2022. – № 22. – Р. 7566. doi: org/10.3390/s22197566.

20. Wang, H., Wang L., Sun N. et al. Quantitative Comparison of the Performance of Piezoresistive, Piezoelectric, Acceleration, and Optical Pulse Wave Sensors // Front. Physiol. – 2020. – № 14. – Р. 1563.

21. Westerhof, N. An artificial arterial system for pumping hearts // J. Applied Physiology. – 1971. – № 31. – Р. 776–781.

22. Xao, H., Liu D., Avolio A. P. et al. Estimation of Stroke Volume from radial pulse waveform by artificial neural network // Computer method sand programs in biomedicine. – 2022. – Vol. 218. – P. 106738. doi: org/10.1016/jcmpd.2022.106738.

23. Nicholson, D. W. Shock Wave Propagation. In Shock Waves in Condensed Matter. Handbook of Shock Waves. 2oo1. ttps://www.sciencedirect.com/science/article/pii/B9780444869043500336.

24. Smirnov, V. M. et al. Fiziologiya cheloveka; pod red. V. M. Smirnova. – M., 2012.

25. Matsukawa, K., Ishii K., Kadowaki K. et al. Discharges of aortic and carotid sinus baroreceptors // J Physiol Sci. – 2014. – № 64. – Р. 291–303.

26. Shmidt, R., Tevs G. Fiziologiya cheloveka: v 3 t. – M.: Mir, 2010.

27. Aaljaer, Ch., Nisson H., De Mey J. G. R. Sympathetic and sensory-motor nerves in peripheral small arteries // Physiol Rev. – 2021. – Vol. 101(2). – Р. 485–544.

28. Safar, M. E., Lacolley P. Disturbance of macroand microcirculation: relations with pulse pressure and cardiac organ damage // Am J Physiol Heart Circ Physiol. – 2007. – Vol. 293. – P. H1–H7. doi: 10.1152/ajpheart.00063.2007.

29. Haines, L., Villalba N., Sackheim A. M. et al. Myogenic tone contributes to the regulation of permeability in mesenteric microvessels // Microvasc Res. – 2019. – Vol. 125. – Р. 103873. doi: 10.1016/j.mvr.2019.04.003.

30. Jacob, M., Chappell D., Becker B. Regulation of blood flow and volume exchange across the Microcirculation // Crit Care. – 2016. – № 20. – Р. 319. doi: 10.1186/s13054-016-1485-0.

31. Meininger, G. A., Davis M. J. Cellular mechanisms involved in the vascular myogenic response // Am J Physiol. – 1992. – Vol. 263(3Pt2). – Р. H647–59. doi: 101152/ajpheart.1992.263.3.H647-59

32. Schubert, R., Mulvany M. J., Schubert R. et al. The myogenic response: established facts and attractive hypotheses // Clin Sci (Lond). – 1999. – № 96(4). – Р. 313–26.

33. Duncker, D. J., Bache R. J. Regulation of Coronary Blood Flow During Exercise // Physiol Rev. – 2008. – Vol. 88. – Р. 1009–1086. doi: 10.1152/physrev.00045.200.

34. Rizzoni, D., De Ciuceis C., Massimo Salvetti M. et al. Interactions between macro- and micro-circulation: are they relevant? // High Blood Press Cardiovasc Prev. – 2015. – № 22(2). – Р. 119–28.

35. D’Angelo, G., Meininger G. A., D’Angelo G. et al. Transduction mechanisms involved in the regulation of myogenic activity // Hypertension. – 1994. – № 6(2). – Р. 1096–105. doi: 10.1161/01.hyp.23.6.109.

36. Nagaoka, T., Mori F. Yoshida A. Retinal Artery Response to Acute Systemic Blood Pressure Increase during Cold Pressor Test in Humans // Investigative Ophthalmology & Visual Science. – 2002. – № 43. – Р. 1941–1945.

37. Davies, P. F. Flow-Mediated Endothelial Mechanotransduction // Physiol. Rev. – 1995. – Vol. 75. – Р. 519–560.

38. Lamontagne, D., Pohl U., Busse R. Mechanical deformation of vessel wall and shear stress determine the basal EDRF release in the intact coronary vascular bed // Circ. Res. – 1992. – Vol. 70. – Р. 123–130.

39. Ganong, W. F. Review of medical physiology, ed N. Y., McGraw Hill. – 2003.

40. Ulrich, S., Hilpert P., Bartel S. H. Ueber die atmungs function des blutes von spitz mausen, weissen mausen und syrischen gold hamstern // Arch Ges Physiol. – 1963. – Vol. 277. – Р. 150–165.

41. Intaglietta, M., Johnson P. C., Winslow R. M. Microvascular and tissue oxygen distribution // Cardiovascular Research. – 1996. – № 32. – Р. 632–64.

42. Nathan, C., Xie Q. W. Regulation of biosynthesis of nitric oxide // J Biol Chem. – 1994. – Vol. 269. – Р. 13725–13728.

43. Nathan, C., Xie Q. W. Nitric oxide synthases: roles, tolls, controls // Cell. – 1994. – № 78. – Р. 915–918.

44. Kubrko, A. I., Firago V. A. Fiziologicheskaya ocenka rezul’tatov spektrometrii coderzhaniya oksigemoglobina i reakcii mikrososudov na izmenenie gemodinamiki // Neotlozhnaya kardiologiya i kardiovaskulyarnye riski. – 2018. – № 2(2). – Р. 358–363.

45. Bur, E. A. Izmenenie otnositel’nogo ob”yoma tkanevyh sosudov pri inarusheniyah lokal’nogo krovotoka // Med. zhurnal. – 2021. – № 1. – Р. 126–131.

46. Pohl, U., Cor de Wit. A Unique Role of NO in the Control of Blood Flow // News Physiol. Sci. – 1999. – № 14. – Р. 74–80.

47. Moncada, S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology // Pharmacol Rev. – 1991. – № 43(2). – Р. 109–142.

48. Kelm, M. Nitric oxide metabolism and breakdown // Biochemica et Biophysica Acta (BBA) // Bioenergetics. – 1999. – Vol. 1411(2–3). – Р. 273–289.

49. Shabarov, A. V., Galenko A. S., Uspenskij Yu. P. et al. Metody diagnostiki endotelial’noj disfunkcii // Byulleten’ sibirskoj mediciny. – 2021. – № 2092. – Р. 202–209. URL: https//doi.org/10.20538/1682-0363-2021-2-202-209.

50. Kubarko, A. I., Bur E. A. Izmenenie skorosti rasprostraneniya pul’sovoj volny po arterial’nym sosudam pri narushenii gemodinamiki // Zdravoohranenie. – 2021. – № 5. – Р. 29–36.

51. Obata, Y., Mizogami M., Singh S. et al. The Effects of Hemodynamic Changes on Pulse Wave Velocity in Cardiothoracic Surgical Patients // BioMed Res Internat. – 2016. Article ID 9640457.

52. Gajshun, E. I., Gajshun I. V. Zavisimost’ skorosti rasprostraneniya pul’sovoj volny v obshchej sonnoj arterii ot chastoty serdechnyh sokrashchenij i pul’sovogo davleniya u muzhchin s arterial’noj gipertenziej // Izvestiya NAN Belarusi. Seriya med. nauk. – 2015. – № 1. – Р. 32–3.

53. Armild, A. C., Raj S. R. Orthostatic hypotension. A practical approach to investigation and management // Canad J Cardiol. – 2017. – № 33(12). – Р. 1725–1728.

54. Paolo, De Santis., Chiara De Fazio., Franchi F. et al. Incogerence beteen systemic hemodynamic and microcirculatory response to fluid challenge in clinically ill patients // J Clin. Med. – 2021. – № 10(3). – Р. 507. doi: 10.3390/jcm10030507.

55. Ince, C. Hemodynamic coherence and the rationale formonitoring the microcirculation // Critical Care. – 2015. – № 19(S8). – Р. 1–13.

56. Kubarko, A. I. Mikrocirkulyaciya: regulyaciya krovotoka v sosudah mikrocirkulyatornogo rusla // Zdravoohranenie. – 2019. – № 9. – Р. 11–23.

57. Popyhova, E. B., Stepanova T. V., Lagutina D. D. et al. Rol’ saharnogo diabeta v vozniknovenii i razvitii endotelial’noj disfunkcii // Problemy endokrinologii. – 2020. – № 66(1). – Р. 47–55. URL: https://doi.org/10.14341/probl12212.


Review

For citations:


Kubarko A.I., Gurinovich I.M. Pulse waves. Role in the implementation and regulation of hemodynamics Part 2. The role of pulse waves in the transmission of information signals, in the implementation and regulation of hemodynamics. Medical Journal. 2025;(2):19-47. (In Russ.) https://doi.org/10.51922/1818-426X.2025.2.19

Views: 4


ISSN 1818-426X (Print)